說(shuō)到AlphaGo,一般人都或多或少聽說(shuō)過(guò),它因擊敗了人類圍棋大師被譽(yù)為“世界壯舉”,標(biāo)志著人類向通用型的人工智能邁出了具有里程碑意義的重要一步。
而如今在前沿科學(xué)研究中的AlphaFold2模型則是人工智能(AI)應(yīng)用的另外一個(gè)標(biāo)志,它因展現(xiàn)出AI for Science的巨大潛力,而受到了各界人士的青睞。
AlphaFold2助蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè),樹AI for Science新高度
蛋白質(zhì)是組成人體細(xì)胞組織的重要成分,對(duì)蛋白質(zhì)三維結(jié)構(gòu)開展有效解析與預(yù)測(cè),可為生物學(xué)、醫(yī)學(xué)、藥學(xué)乃至農(nóng)業(yè)、畜牧業(yè)等行業(yè)未來(lái)研究與發(fā)展提供重要依據(jù),尤其對(duì)與人類健康直接相關(guān)的藥物研發(fā)意義重大。
然而,用X光、冷凍電鏡、核磁共振等傳統(tǒng)方法對(duì)蛋白質(zhì)結(jié)構(gòu)進(jìn)行解析,遠(yuǎn)趕不上氨基酸序列的增加速度,這會(huì)造成海量待測(cè)樣品在實(shí)驗(yàn)室中等待數(shù)月乃至數(shù)年。國(guó)際權(quán)威數(shù)據(jù)庫(kù)SWISS-PROT顯示,目前累計(jì)的蛋白序列的信息已經(jīng)超過(guò)56萬(wàn),用傳統(tǒng)方法去完成這浩瀚繁多的測(cè)序無(wú)疑成為“不可能完成的任務(wù)”,須另辟蹊徑。
科技創(chuàng)新的車輪滾滾向前。如前文所述,人工智能的發(fā)展為蛋白質(zhì)測(cè)序效率帶來(lái)了契機(jī)。其中AlphaFold2模型讓人工智能在生物醫(yī)藥領(lǐng)域發(fā)揮著重要的作用。
一般來(lái)說(shuō),人工智能方法的預(yù)測(cè)精度超過(guò)90分,便可認(rèn)為預(yù)測(cè)結(jié)果與實(shí)驗(yàn)方法得到的蛋白質(zhì)結(jié)構(gòu)基本一致。而AlphaFold2的92.4分,其不僅可以分析X-射線晶體學(xué)很難解決的楔入細(xì)胞膜中的蛋白質(zhì)結(jié)構(gòu),還成功解開了蛋白質(zhì)折疊問(wèn)題,甚至可以幫助研究者們制造自然界中不存在的蛋白質(zhì)。
AlphaFold2帶來(lái)的這些重大突破,標(biāo)志著AI輔助藥物基礎(chǔ)理論研究進(jìn)入新的階段,樹立了AI for science新高度。
比如,目前全球設(shè)計(jì)的幾乎所有的藥物都作用于蛋白質(zhì),通俗講,需要像鑰匙開鎖般精確匹配,而此過(guò)程的第一步是確定哪把鑰匙開哪把鎖,用更專業(yè)的話說(shuō),就是尋找藥物靶標(biāo),即弄清楚藥物分子作用與何種蛋白結(jié)合。而通過(guò)可解碼蛋白質(zhì)結(jié)構(gòu)的人工智能算法,就可快速篩選成千上萬(wàn)的新藥物靶標(biāo),從而大大縮短新藥研制周期;而制造自然界中并不存在的蛋白質(zhì),無(wú)疑可以更好幫助人類以前所未有的方式應(yīng)對(duì)重大挑戰(zhàn)。
端到端優(yōu)化AlphaFold2,讓人工智能更普適濟(jì)民
AlphaFold2為蛋白質(zhì)結(jié)構(gòu)解析與預(yù)測(cè)提供了通途,為人工智能在生物醫(yī)藥等領(lǐng)域的應(yīng)用打開了新的窗口,然而隨其在產(chǎn)、學(xué)、研各細(xì)分領(lǐng)域中的落地,也遇到嚴(yán)峻挑戰(zhàn)。例如,隨各種應(yīng)用對(duì)于推理高通量和高性能的需求與日劇增,使用者需要更加充分地挖掘平臺(tái)計(jì)算潛力,來(lái)提升執(zhí)行效率。
所謂高通量測(cè)序技術(shù),也被稱為革命性的蛋白質(zhì)測(cè)序方法,也是“十四五”時(shí)期生物經(jīng)濟(jì)領(lǐng)域重點(diǎn)推進(jìn)創(chuàng)新應(yīng)用的一項(xiàng)關(guān)鍵技術(shù),簡(jiǎn)單講就是一次并行對(duì)大量核酸分子進(jìn)行平行序列測(cè)定的技術(shù),但實(shí)施一次測(cè)序就能產(chǎn)出不低于100Mb的數(shù)據(jù),這巨大的數(shù)據(jù)量給AlphaFold2的應(yīng)用帶來(lái)很大困擾。
原來(lái),AlphaFold2剛問(wèn)世時(shí)由于算法和硬件架構(gòu)本身等問(wèn)題,如GPU的并行計(jì)算,但是這類硬件存在嚴(yán)重的內(nèi)存限制,使得即便是使用單卡最大內(nèi)存,能夠輸入去預(yù)測(cè)的蛋白質(zhì)序列長(zhǎng)度也不足1000氨基酸。
面對(duì)突破這一瓶頸的急迫需求,英特爾® 架構(gòu)產(chǎn)品--內(nèi)置AI加速能力的至強(qiáng)® 可擴(kuò)展平臺(tái)搭配傲騰™ 持久內(nèi)存的產(chǎn)品組合,使得CPU平臺(tái)得以具備TB級(jí)的內(nèi)存容量,有潛力滿足高通量測(cè)序需求?;谶@一優(yōu)勢(shì),英特爾針對(duì)不同氨基酸序列長(zhǎng)度下蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)所需占用的內(nèi)存開展了實(shí)驗(yàn),實(shí)踐表明該組合打破了限制預(yù)測(cè)序列長(zhǎng)度的 “內(nèi)存墻”,實(shí)現(xiàn)了AlphaFold2的高通量?jī)?yōu)化。
結(jié)果顯示,從短到206個(gè)氨基酸,至長(zhǎng)到2797個(gè)氨基酸,最終都達(dá)到了預(yù)期效果,驗(yàn)證了至強(qiáng)® 可擴(kuò)展平臺(tái)產(chǎn)品組合,能夠輕松應(yīng)對(duì)AlphaFold2蛋白質(zhì)測(cè)序從20GB至510GB的內(nèi)存占用,并有助于其實(shí)現(xiàn)更大范圍的蛋白結(jié)構(gòu)探索。
在推動(dòng)AlphaFold2提升普適性、拓展應(yīng)用的進(jìn)程中,英特爾在發(fā)揮至強(qiáng)® 可擴(kuò)展平臺(tái)產(chǎn)品組合提供強(qiáng)勁通用算力的同時(shí),亦充分利用豐富的軟件工具實(shí)施通量?jī)?yōu)化,讓處理器內(nèi)置的英特爾® AVX-512技術(shù),在英特爾® oneAPI 軟件工具的激活與配合下,實(shí)現(xiàn)并行計(jì)算加速,為AlphaFold2應(yīng)用進(jìn)一步提供性能調(diào)優(yōu)空間。
這一軟件級(jí)調(diào)優(yōu),經(jīng)先在預(yù)處理階段對(duì)模型進(jìn)行高通量?jī)?yōu)化,然后將模型遷移到PyTorch框架,接著再在PyTorch版本上進(jìn)行細(xì)節(jié)上的推理優(yōu)化,最后給予TB級(jí)內(nèi)存支持,即可實(shí)現(xiàn)更優(yōu)的加速效果。
經(jīng)由上述基于至強(qiáng)® 可擴(kuò)展平臺(tái)對(duì)AlphaFold2實(shí)施的端到端優(yōu)化,對(duì)于一個(gè)含有765氨基酸的蛋白質(zhì)測(cè)試樣例,采用CPU 64個(gè)物理核并發(fā)模式,支持了最高3.2TB的內(nèi)存消耗,測(cè)試通量從未經(jīng)任何優(yōu)化的4.56序列/天提升105.35序列/天,效率提升達(dá)23.11倍;且如果在單節(jié)點(diǎn)上配備最高8TB內(nèi)存,就可以支持完成高于10000氨基酸序列長(zhǎng)度下蛋白結(jié)構(gòu)的預(yù)測(cè),為人工智能在藥物研發(fā)等領(lǐng)域的廣泛應(yīng)用展現(xiàn)了無(wú)限可能。
在國(guó)際學(xué)術(shù)期刊《Science》聯(lián)合英特爾推出的《架構(gòu)師成長(zhǎng)計(jì)劃》課程中,晶泰科技的首席研發(fā)專家楊明俊博士這樣談到:“以AlphaFold2為代表的研究成果,被認(rèn)為是開拓了科學(xué)研究的第四范式,就是基于大量的數(shù)據(jù),然后采用以深度神經(jīng)網(wǎng)絡(luò)為代表的模型,給出對(duì)問(wèn)題的一個(gè)解答。蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)曾經(jīng)被認(rèn)為是不可能完成的一件事情,如今被AI算法實(shí)現(xiàn),這標(biāo)志著AI在生物醫(yī)藥領(lǐng)域的進(jìn)展邁入了一個(gè)全新的領(lǐng)域和階段。”
《“十四五”生物經(jīng)濟(jì)發(fā)展規(guī)劃》明確把加快發(fā)展高通量基因測(cè)序技術(shù),作為開展前沿生物技術(shù)創(chuàng)新的重要手段;支持采用人工智能等信息技術(shù),實(shí)現(xiàn)藥物產(chǎn)業(yè)的精準(zhǔn)化研制,進(jìn)而通過(guò)生物技術(shù)與信息技術(shù)融合更好惠民。
相信在這一進(jìn)程中,英特爾的架構(gòu)優(yōu)勢(shì)也能物其盡用,其軟硬兼施對(duì)AlphaFold2生物信息測(cè)序效率實(shí)現(xiàn)端到端優(yōu)化,并使其具備更高適用性的生動(dòng)實(shí)踐,展現(xiàn)了人工智能與科學(xué)研究的相互融合,并為人類在前沿科學(xué)領(lǐng)域的未來(lái)發(fā)展帶來(lái)了廣闊的想象空間。通過(guò)不斷地范式創(chuàng)新成果樹立新的“AI for Science”里程碑,以創(chuàng)造更美好的未來(lái)!(來(lái)源:科技日?qǐng)?bào))
更多內(nèi)容,歡迎注冊(cè)觀看:https://s2.uao.so/434f30bb